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Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016



Problem: We need All-Reduce
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Program This? Will be in PA2!



Performance

• Message size over networks: 

• Sum: 3N

• Send Sum back: 3N

• = 6N

• Can we do better?

• Hint: we cannot do better than 3N



Why Collective Communication?

• Programming Convenience

• Use a set of well-defined communication primitives to express 

complex communication patterns

• Unification and Performance

• Since they are well defined and well structured, we can 

optimize them to the extreme

• ML Systems Collective communication 
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Make it Formal

• A 1D Mesh of workers (or devices, or nodes)



Model of Parallel Computation

• a node can send directly to any other node (maybe not true)

• a node can simultaneously receive and send

• cost of communication

• sending a message of length n  between any two nodes

𝛼 + 𝑛 𝛽





Collective Communications

• Broadcast

• Reduce(-to-one)

• Scatter 

• Gather

• Allgather

• Reduce-scatter

• Allreduce

• All-2-All



Broadcast

AfterBefore



Reduce(-to-one)

AfterBefore



Broadcast/Reduce(-to-one)

Broadcast
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Scatter
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Gather

AfterBefore



Scatter/Gather

Scatter

Gather



Allgather

AfterBefore



Reduce-scatter

AfterBefore



Allgather/Reduce-scatter

Allgather

Reduce-scatter



Allreduce
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All2All
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Some Facts

• Collective is much more expensive than P2P

• Collective can be assembled using many P2P

• Collective is cheaper than realizing collective using P2P (we’ll 

see)

• Collective is highly optimized in the past 20 years

• Look out for “X”CCL libraries

• NCCL, MCCL, OneCCL, UCCL

• Collective is not fault-tolerant

• A major sources of faults in ML systems



Communication Model: 𝛼𝛽 model

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• Small Message size (𝑛 → 0): 𝛼 dominates, emphasize latency

• Large Message Size (𝑛 → +∞): 𝑛𝛽 dominate, emphasize 

bandwidth utilization



Two Family of Mainstream Algorithms/Implementations

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Large Message: Ring algorithm

• Emphasize bandwidth utilization

• There are 50+ different algorithms developed in the past 50 years 

by a community called “High-performance computing” 

• 2021 Turing award



General principles: Low Latency

• Minimize the number of rounds needed for communication

• Minimal-spanning tree algorithm



General principles

• message starts on one processor



General principles

• divide logical linear array in half



General principles

• send message to the half of the network that does not contain 

the current node (root) that holds the message



General principles

• send message to the half of the network that does not contain 

the current node (root) that holds the message



General principles

• continue recursively in each of the two halves



Broadcast

AfterBefore















Let us view this more closely

• Red arrows indicate startup of communication (leading to 

latency, 𝛼)

• Green arrows indicate packets in transit (leading to a bandwidth 

related cost proportional to 𝛽 and the length of the packet























































































log(p)   + n( )

Cost of minimum spanning tree broadcast

number of steps cost per steps



Reduce(-to-one)

AfterBefore





















Cost of minimum spanning tree reduce(-to-one)

log(p)   + n + n( )



Scatter

AfterBefore































Cost of minimum spanning tree scatter

• Assumption: power of two number of nodes
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Gather

AfterBefore































Cost of minimum spanning tree gather

• Assumption: power of two number of nodes
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Using the building blocks



Allgather



Gather

Allgather



Broadcast

Allgather (short vector)



Cost of gather/broadcast allgather

• Assumption: power of two number of nodes
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Reduce-scatter (small message)



Reduce(-to-one)

Reduce-scatter

(short vector)



Scatter

Reduce-scatter

(short vector)



Cost of Reduce(-to-one)/scatter Reduce-scatter

• Assumption: power of two number of nodes
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Allreduce (Latency-optimized)



Reduce(-to-one)

Allreduce (Latency-optimized)
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Cost of reduce(-to-one)/broadcast Allreduce

• Assumption: power of two number of nodes
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Summary of MST algorithms

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Can we do better?

• Problem of Minimum Spanning Tree Algorithm?

• It prioritize latency rather than bandwidth

• Hence: Some links are idle

• Next: Large message size algorithm



Large Message

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• The second term dominates – we want to minimize the second 

term

• We want to utilize the bandwidth as much as possible 



General principles

• Use all the links between every two nodes

• A logical ring can be embedded in a physical linear array with 

worm-hole routing, since the “wrap-around” message doesn’t 

conflict





• A logical ring can be embedded in a physical linear array with 

worm-hole routing, since the “wrap-around” message doesn’t 

conflict
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