
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

Problem: We need All-Reduce

data

Send()

data

Send()

data

Send()

data ∇L(𝜃,𝐷𝑝)

data

Recv()
𝜃𝑡+1 ← 𝜃𝑡 +෍

𝑖=0

3

∇𝜃𝑖
𝑡

Worker i

For i in range(4)

Program This? Will be in PA2!

Performance

• Message size over networks:

• Sum: 3N

• Send Sum back: 3N

• = 6N

• Can we do better?

• Hint: we cannot do better than 3N

Why Collective Communication?

• Programming Convenience

• Use a set of well-defined communication primitives to express

complex communication patterns

• Unification and Performance

• Since they are well defined and well structured, we can

optimize them to the extreme

• ML Systems Collective communication

10 2 3 4 5 6 87

Make it Formal

• A 1D Mesh of workers (or devices, or nodes)

Model of Parallel Computation

• a node can send directly to any other node (maybe not true)

• a node can simultaneously receive and send

• cost of communication

• sending a message of length n between any two nodes

𝛼 + 𝑛 𝛽

Collective Communications

• Broadcast

• Reduce(-to-one)

• Scatter

• Gather

• Allgather

• Reduce-scatter

• Allreduce

• All-2-All

Broadcast

AfterBefore

Reduce(-to-one)

AfterBefore

Broadcast/Reduce(-to-one)

Broadcast

Reduce(-to-one)

Scatter

AfterBefore

Gather

AfterBefore

Scatter/Gather

Scatter

Gather

Allgather

AfterBefore

Reduce-scatter

AfterBefore

Allgather/Reduce-scatter

Allgather

Reduce-scatter

Allreduce

AfterBefore

All2All

AfterBefore

Some Facts

• Collective is much more expensive than P2P

• Collective can be assembled using many P2P

• Collective is cheaper than realizing collective using P2P (we’ll

see)

• Collective is highly optimized in the past 20 years

• Look out for “X”CCL libraries

• NCCL, MCCL, OneCCL, UCCL

• Collective is not fault-tolerant

• A major sources of faults in ML systems

Communication Model: 𝛼𝛽 model

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• Small Message size (𝑛 → 0): 𝛼 dominates, emphasize latency

• Large Message Size (𝑛 → +∞): 𝑛𝛽 dominate, emphasize

bandwidth utilization

Two Family of Mainstream Algorithms/Implementations

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Large Message: Ring algorithm

• Emphasize bandwidth utilization

• There are 50+ different algorithms developed in the past 50 years

by a community called “High-performance computing”

• 2021 Turing award

General principles: Low Latency

• Minimize the number of rounds needed for communication

• Minimal-spanning tree algorithm

General principles

• message starts on one processor

General principles

• divide logical linear array in half

General principles

• send message to the half of the network that does not contain

the current node (root) that holds the message

General principles

• send message to the half of the network that does not contain

the current node (root) that holds the message

General principles

• continue recursively in each of the two halves

Broadcast

AfterBefore

Let us view this more closely

• Red arrows indicate startup of communication (leading to

latency, 𝛼)

• Green arrows indicate packets in transit (leading to a bandwidth

related cost proportional to 𝛽 and the length of the packet

log(p)   + n()

Cost of minimum spanning tree broadcast

number of steps cost per steps

Reduce(-to-one)

AfterBefore

Cost of minimum spanning tree reduce(-to-one)

log(p)   + n + n()

Scatter

AfterBefore

Cost of minimum spanning tree scatter

• Assumption: power of two number of nodes

 +
n

2k












k=1

log(p)



=

log(p)  +
p − 1

p
n

Gather

AfterBefore

Cost of minimum spanning tree gather

• Assumption: power of two number of nodes

 +
n

2k












k=1

log(p)



=

log(p)  +
p − 1

p
n

Using the building blocks

Allgather

Gather

Allgather

Broadcast

Allgather (short vector)

Cost of gather/broadcast allgather

• Assumption: power of two number of nodes

log(p) +
p − 1

p
n

log(p)( + n)

2log(p) +
p − 1

p
+ log(p)









 n

gather

broadcast

Reduce-scatter (small message)

Reduce(-to-one)

Reduce-scatter

(short vector)

Scatter

Reduce-scatter

(short vector)

Cost of Reduce(-to-one)/scatter Reduce-scatter

• Assumption: power of two number of nodes

log(p)( + n + n)

log(p) +
p − 1

p
n

2log(p) +
p − 1

p
+ log(p)









 n + log(p)n

Reduce(-to-one)

scatter

Allreduce (Latency-optimized)

Reduce(-to-one)

Allreduce (Latency-optimized)

Broadcast

Allreduce

(short vector)

Cost of reduce(-to-one)/broadcast Allreduce

• Assumption: power of two number of nodes

log(p)( + n + n)

log(p)( + n)

2log(p) + 2log(p)n + log(p)n

Reduce(-to-one)

broadcast

Recap
Reduce(-to-one)

log(p)( + n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)( + n)

Gather
log(p) +

p−1

p
n

Allreduce

Reduce-scatter

Allgather

Recap

Reduce(-to-one)
log(p)( + n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)( + n)

Gather
log(p) +

p−1

p
n

Allreduce

Reduce-scatter
2log(p) + log(p)n( + ) +

p−1

p
n

Allgather

Recap

Reduce(-to-one)
log(p)( + n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)( + n)

Gather
log(p) +

p−1

p
n

Allreduce
2log(p) + log(p)n(2 + )

Reduce-scatter
2log(p) + log(p)n( + ) +

p−1

p
n

Allgather
2log(p) + log(p)n +

p−1

p
n

Recap

Reduce(-to-one)
log(p)( + n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)( + n)

Gather
log(p) +

p−1

p
n

Allreduce
2log(p) + log(p)n(2 + )

Reduce-scatter
2log(p) + log(p)n( + ) +

p−1

p
n

Allgather

Recap

Reduce(-to-one)
log(p)( + n + n)

Scatter
log(p) +

p−1

p
n

Broadcast
log(p)( + n)

Gather
log(p) +

p−1

p
n

Allreduce
2log(p) + log(p)n(2 + )

Reduce-scatter
2log(p) + log(p)n( + ) +

p−1

p
n

Allgather
2log(p) + log(p)n +

p−1

p
n

Summary of MST algorithms

• Small message: Minimum Spanning Tree algorithm

• Emphasize low latency

• Can we do better?

• Problem of Minimum Spanning Tree Algorithm?

• It prioritize latency rather than bandwidth

• Hence: Some links are idle

• Next: Large message size algorithm

Large Message

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• The second term dominates – we want to minimize the second

term

• We want to utilize the bandwidth as much as possible

General principles

• Use all the links between every two nodes

• A logical ring can be embedded in a physical linear array with

worm-hole routing, since the “wrap-around” message doesn’t

conflict

• A logical ring can be embedded in a physical linear array with

worm-hole routing, since the “wrap-around” message doesn’t

conflict

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Problem: We need All-Reduce
	Slide 4: Program This? Will be in PA2!
	Slide 5: Performance
	Slide 6: Why Collective Communication?
	Slide 7: Make it Formal
	Slide 8: Model of Parallel Computation
	Slide 9
	Slide 10: Collective Communications
	Slide 11: Broadcast
	Slide 12: Reduce(-to-one)
	Slide 13: Broadcast/Reduce(-to-one)
	Slide 14: Scatter
	Slide 15: Gather
	Slide 16: Scatter/Gather
	Slide 17: Allgather
	Slide 18: Reduce-scatter
	Slide 19: Allgather/Reduce-scatter
	Slide 20: Allreduce
	Slide 21: All2All
	Slide 22: Some Facts
	Slide 23: Communication Model: alpha beta model
	Slide 24: Two Family of Mainstream Algorithms/Implementations
	Slide 25: General principles: Low Latency
	Slide 26: General principles
	Slide 27: General principles
	Slide 28: General principles
	Slide 29: General principles
	Slide 30: General principles
	Slide 31: Broadcast
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Let us view this more closely
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Cost of minimum spanning tree broadcast
	Slide 82: Reduce(-to-one)
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: Cost of minimum spanning tree reduce(-to-one)
	Slide 93: Scatter
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Cost of minimum spanning tree scatter
	Slide 109: Gather
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124: Cost of minimum spanning tree gather
	Slide 125: Using the building blocks
	Slide 126: Allgather
	Slide 127: Allgather
	Slide 128: Allgather (short vector)
	Slide 129: Cost of gather/broadcast allgather
	Slide 130: Reduce-scatter (small message)
	Slide 131: Reduce-scatter (short vector)
	Slide 132: Reduce-scatter (short vector)
	Slide 133: Cost of Reduce(-to-one)/scatter Reduce-scatter
	Slide 134: Allreduce (Latency-optimized)
	Slide 135: Allreduce (Latency-optimized)
	Slide 136: Allreduce (short vector)
	Slide 137: Cost of reduce(-to-one)/broadcast Allreduce
	Slide 138: Recap
	Slide 139: Recap
	Slide 140: Recap
	Slide 141: Recap
	Slide 142: Recap
	Slide 143: Summary of MST algorithms
	Slide 144: Large Message
	Slide 145: General principles
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150

